A HOMOTOPY PERTURBATION ALGORITHM AND TAYLOR SERIES EXPANSION METHOD TO SOLVE A SYSTEM OF SECOND KIND FREDHOLM INTEGRAL EQUATIONS

نویسنده

  • S. M. Mirzaei Faculty of science, Minoodasht Branch, Islamic Azad University, Iran Iran, Islamic Republic of Department of Mathematics
چکیده مقاله:

In this paper, we will compare a Homotopy perturbation algorithm and Taylor series expansin method for a system of second kind Fredholm integral equations. An application of He’s homotopy perturbation method is applied to solve the system of Fredholm integral equations. Taylor series expansin method reduce the system of integral equations to a linear system of ordinary differential equation.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

a homotopy perturbation algorithm and taylor series expansion method to solve a system of second kind fredholm integral equations

in this paper, we will compare a homotopy perturbation algorithm and taylor series expansin method for a system of second kind fredholm integral equations. an application of he’s homotopy perturbation method is applied to solve the system of fredholm integral equations. taylor series expansin method reduce the system of integral equations to a linear system of ordinary differential equation.

متن کامل

A Stochastic algorithm to solve multiple dimensional Fredholm integral equations of the second kind

In the present work‎, ‎a new stochastic algorithm is proposed to solve multiple dimensional Fredholm integral equations of the second kind‎. ‎The solution of the‎ integral equation is described by the Neumann series expansion‎. ‎Each term of this expansion can be considered as an expectation which is approximated by a continuous Markov chain Monte Carlo method‎. ‎An algorithm is proposed to sim...

متن کامل

A Modified Degenerate Kernel Method for the System of Fredholm Integral Equations of the Second Kind

In this paper, the system of Fredholm integral equations of the second kind is investigated by using a modified degenerate kernel  method (MDKM). To construct a MDKM the source function is approximated by the same way of producing degenerate kernel. The interpolation is used to make the needed approximations. Lagrange polynomials are adopted for the interpolation. The equivalency of  proposed m...

متن کامل

a stochastic algorithm to solve multiple dimensional fredholm integral equations of the second kind

in the present work‎, ‎a new stochastic algorithm is proposed to solve multiple dimensional fredholm integral equations of the second kind‎. ‎the solution of the‎ integral equation is described by the neumann series expansion‎. ‎each term of this expansion can be considered as an expectation which is approximated by a continuous markov chain monte carlo method‎. ‎an algorithm is proposed to sim...

متن کامل

A new approach to solve fuzzy system of linear equations by Homotopy perturbation method

In this paper, we present an efficient numerical algorithm for solving fuzzy systems of linear equations based on homotopy perturbation method. The method is discussed in detail and illustrated by solving some numerical examples.

متن کامل

Approximate Solution of Linear Volterra-Fredholm Integral Equations and Systems of Volterra-Fredholm Integral Equations Using Taylor Expansion Method

In this study, a new application of Taylor expansion is considered to estimate the solution of Volterra-Fredholm integral equations (VFIEs) and systems of Volterra-Fredholm integral equations (SVFIEs). Our proposed method is based upon utilizing the nth-order Taylor polynomial of unknown function at an arbitrary point and employing integration method to convert VFIEs into a system of linear equ...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 1  شماره 2 (SPRING)

صفحات  117- 123

تاریخ انتشار 2011-03-21

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023